1 from __future__
import print_function
2 from __future__
import division
3 from past.utils
import old_div
5 from full_physics
import *
11 from nose.plugins.skip
import Skip, SkipTest
14 '''This test is an example of using the nlopt package. We ended up 15 *not* using this, the solvers didn't work well with our problems. But 16 leave this test in place as an example of how to set this up in case 17 we want to return to this at some point.''' 19 config_file =
"/home/smyth/Local/Level2PythonBuild/build/oco2_sounding_1_test/oco_oco2_sounding_1_test.config" 20 lua_config =
"/home/smyth/Local/Level2PythonBuild/build/oco2_sounding_1_test/config_diff_solv.lua" 21 l2run = L2Run.create_from_existing_run(config_file, lua_config=lua_config)
22 opt_problem = l2run.lua_config.opt_problem
28 g = opt_problem.gradient_x(x)
30 return opt_problem.cost_x(x)
31 opt = nlopt.opt(nlopt.LD_MMA, opt_problem.parameter_size)
32 opt.set_min_objective(func)
33 low_x = np.zeros((opt_problem.parameter_size))
65 opt.set_lower_bounds(low_x)
66 x = [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
67 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
68 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
69 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
70 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
71 1.00000000e-01, 1.02315449e+05, -9.00000000e-01, 9.14938609e-01,
72 0.00000000e+00, 9.50000000e-01, 1.00000000e-09, 0.00000000e+00,
73 9.50000000e-01, 1.00000000e-09, 0.00000000e+00, 0.00000000e+00,
74 1.00000000e-09, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00,
75 -9.00000000e-01, 1.13937281e+00, 9.00000000e-01, 1.01898162e+00,
76 -9.00000000e-01, 1.65769130e+00, -8.99982524e-01, 6.90711580e-01,
77 -8.99963735e-01, 2.94325091e+00, 9.00046938e-01, -2.06407296e-14,
79 opt.optimize(opt_problem.parameters)
82 '''This is from the tutorial''' 87 grad[1] = old_div(0.5, math.sqrt(x[1]))
88 return math.sqrt(x[1])
90 def myconstraint(x, grad, a, b):
92 grad[0] = 3 * a * (a*x[0] + b)**2
94 return (a*x[0] + b)**3 - x[1]
96 opt = nlopt.opt(nlopt.LD_MMA, 2)
97 opt.set_lower_bounds([-float(
'inf'), 0])
98 opt.set_min_objective(myfunc)
99 opt.add_inequality_constraint(
lambda x,grad: myconstraint(x,grad,2,0), 1e-8)
100 opt.add_inequality_constraint(
lambda x,grad: myconstraint(x,grad,-1,1), 1e-8)
101 opt.set_xtol_rel(1e-4)
102 x = opt.optimize([1.234, 5.678])
103 minf = opt.last_optimum_value()
104 print(
"optimum at ", x[0],x[1])
105 print(
"minimum value = ", minf)
106 print(
"result code = ", opt.last_optimize_result())
def nlopt_constrained_test()